Failure Modes & Effects Analysis for Processes

Manufacturing Excellence

What is a pFMEA?

A systematic approach for identifying, quantifying and ranking the risk of failure modes and prioritize efforts to mitigate risk.

- Identifies potential failure modes and severity
- Facilitates process improvement
- Identifies & eliminates concerns early in process development
- Stimulates the interchange of ideas between people
- Documents the actions taken to reduce risk
- Improves "bottom line"
- Improves process reliability

pFMEA Conceptualized

What can go wrong with a process?

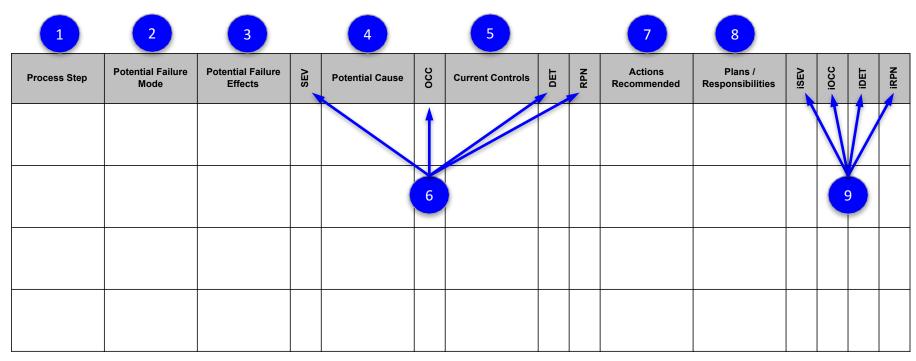
Where is the biggest risk?

What actions will we take to reduce the risk?

pFMEA's help us focus on the cause of the problems

pFMEA Conceptualized

What can go wrong with a process?

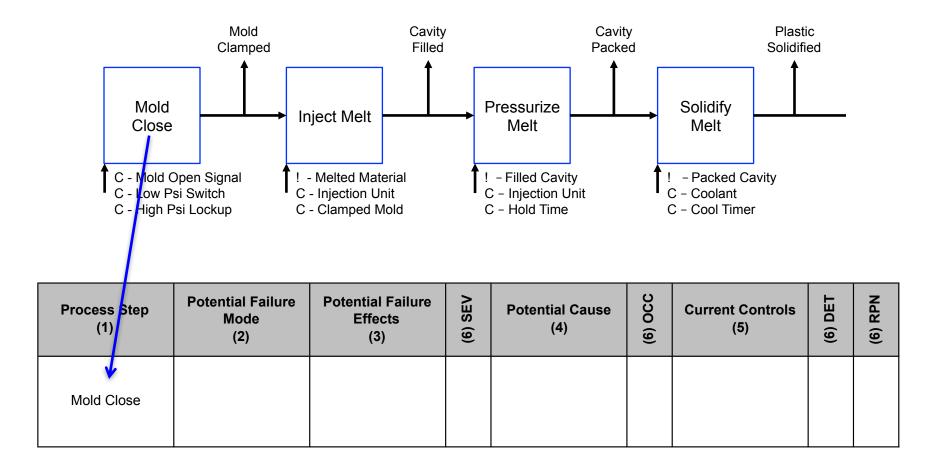


What actions will we take to reduce the risk?

pFMEA's help us focus on the cause of the problems

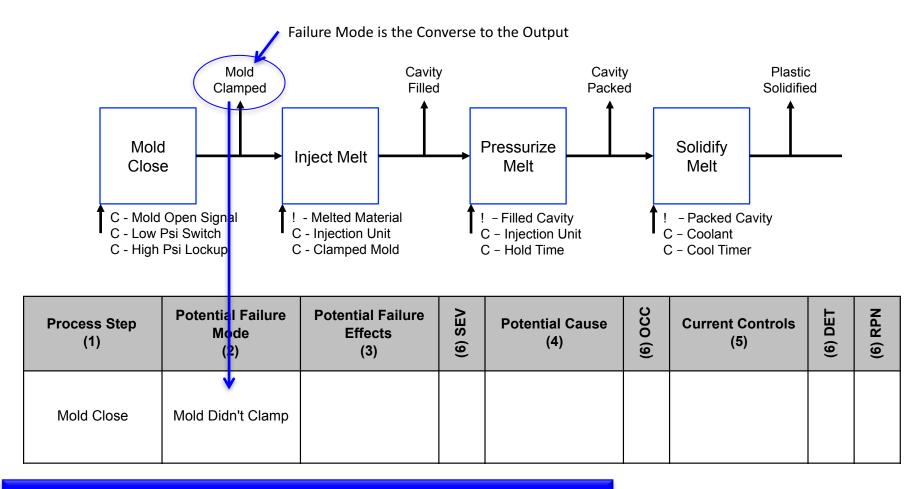
pFMEA Steps

- 1. List the Process Steps
- Identify Potential Failure Modes
- 3. Describe the Effects of Failures
- 4. Determine Causes
- 5. Describe Controls


- 6. Rate Severity, Occurrence, Detectability and Calculate RPN
- 7. Recommend Actions
- Define the Plan and Responsibility for Action
- 9. Assess Actions

Preparation for a pFMEA

- Complete a PMAP that includes:
 - Process Steps
 - Process Outputs
 - Process Inputs
- Compile a team with knowledgeable representation from:
 - Manufacturing Engineering
 - Quality Engineering
 - Project Engineering
 - Manufacturing
- Schedule meetings
 - Avoid scheduling any meetings for longer than 3-hours

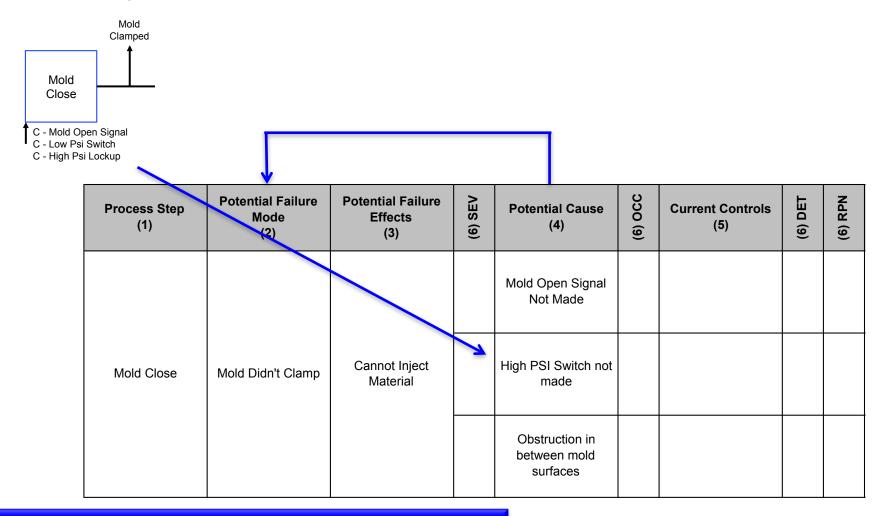

Step 1: List the Process Step

List the process steps from your PMAP in the pFMEA

Step 2: Identify Potential Failure Modes

How the process could fail to conform to process requirements as described by the needs, wants, and expectations of internal & external customers. It is typically the converse to what you want to happen at a process step.

Step 3: Describe the Effects of the Failure


An adverse consequence that the customer might experience. The customer could be the next operation, subsequent operations, or the end user

Process Step (1)	Potential Failure Mode (2)	Potential Failure Effects (3)	(e) SEV	Potential Cause (4)	၁၁၀ (၅)	Current Controls (5)	(6) DET	(6) RPN
Mold Close	Mold Didn't Clamp	Cannot Inject Material						

There can be multiple effects for each Failure Mode!

Step 4: Determine the Cause(s)

The means by which a particular element of the process results in a Failure Mode, Root Causes are inputs (x's) to the process

Step 5: Describe the Controls

Process Step (1)	Potential Failure Mode (2)	Potential Failure Effects (3)	(6) SEV			Current Controls (5)		(6) RPN
Mold Close		Cannot Inject Material		Mold Open Signal Not Made		Documented process settings		
	Mold Didn't Clamp			High PSI Switch not made		Mold Protection Set- up Training		
				Obstruction in between mold surfaces		None		

What you are currently doing to:

- Prevent the cause from occurring
- Reduce the rate of occurrence for the cause
- Detect the cause before it results in the failure mode
- Detect the failure mode before customer experiences the effect

Step 6: Create Severity, Occurrence and Detection Tables

	Severity Crite	ria
Rank	Process	Product
5	Product reg requirement	Loss of Function, could harm surgeon or patient and necessitate revision surgery
4	Product scrapped	Loss of function, could harm (minor) surgeon or patient
3	Product requires rework on-line	Loss of Primary Function
2	Product requires rework off-line	Degraded function / Loss of Secondary Function
1	No Effect (MRB)	No Effect (MRB)

	Detection
Rank	Description
5	Remote - Measurements can only be performed after assembly
4	Low - Measurement can be performed after subsequent process steps
3	Moderate - Measurements cannot be performed in-process but can be measured prior to next manufacturing step
2	High - Measurements can be performed in- process
1	Certain - Can detect failure by functional Check ??? Error-proofed process

	Occurrence Criteria											
Rank	Probability of Failure	Description										
5	Extremely High	greater than 1 in 10										
4	High	greater than 1 in 100										
3	Occasional	greater than 1 in 10,000										
2	Remote	greater than 1 in 100,000										
1	Improbable	Effective Preventative Control in place										

Step 7: Rate Severity, Occurrence, Detection and RPN

Process Step (1)	Potential Failure Mode (2)	Potential Failure Effects (3)	(e) SEV	Potential Ca	ause	၁၁o (9)	Current Controls (5)	(6) DET	(6) RPN
Mold Close			3	Mold Open S Not Mad	- 1	1	Documented process settings	2	6
	as Mold Didn't Cl ho	DIOCESS OF	estima likeliho specifio	ood that a ecause will	tch not	c	Detection is an assessment of the ability of the current control to either detect the failure		36
		product	occur and result in the failure mode 3 between surfac				mode, detect the cause, and/or prevent the cause from occurring		30

Note: Potential
Causes that share the
same Potential Failure
Effect share the same
Severity

Risk Priority Number (RPN) = Sev x Occ x Det

- This number is used to place priorities
- Items with low RPN numbers still require attention if the severity ranking is high

Step 8: Recommend Actions

Once RPN's are calculated:

- ✓ Identify high RPN items
- ✓ Recommend action

High Severity Rating Generally requires a design change (Difficult to Change) High Occurrence
Rating leads to the
prevention of the
failure mode or the
cause of the failure
mode

Focus on Defect Prevention

High Detection
Rating leads to
design controls to
detect the cause and
prevent the failure
from occurring
(easiest to change)

Step 9: Recommend and Determine the Plan and Assign Responsibility

Process Step (1)	Potential Failure Mode (2)	Potential Failure Effects (3)	(6) SEV	Potential Cause (4)	၁၁၀ (၅)	Current Controls (5)	(6) DET	(6) RPN	Actions Recommended (7)	Plans / Responsibilities (8)	(9) iSEV	(9) iocc	(9) iDET	(9) iRPN
		d Didn't Clamp Cannot Inject Material	3	Mold Open Signal Not Made	1	Documented process settings	2	6						
Mold Close	Mold Close Mold Didn't Clamp		3	High PSI Switch not made	3	Mold Protection Set- up Training	4	36	Perform quarterly skills assessment	CI Specialist to develop and implement skills assessment by 20May2017	3	1	4	12
			3	Obstruction in between mold surfaces	5	None	2	30						

- Actions must have dates and who is responsible
- After actions are recommended, re-rate & re-calculate RPN's
- Once actions are implemented, update pFMEA with 'new' actuals to see the actual impact on the actions

Questions?

