Planning Design of Experiments

Training for Operational Excellence

Customer Needs

Customers Needs

It is important to understand our customers validation process and the next process that our parts go through after they leave our facility.

Examples of Customers Needs:

- The next step of the process is high speed automation
 - Do we know how the part is presented to the automation?
- Design validation
- · Assembly process validation
 - What are the sample size they need to qualify their equipment?

Note: When applicable, add the customers 'next' process step to our process map

Risi

Process Risk

Why should we care about Process Risk?

- Understanding our risk helps us design an escalation process
- This knowledge helps us determine a critical spares list
- RPN's provide direction for improvements
- By reducing risk we increase our ability to meet our promises

What Tool Will We Use to Evaluate Risk? - pFMEA

Experiment Desig

DOE Design

Now we are into the design, we need to decide what we are trying to achieve:

- Understanding our process fractional factorial
- Modeling our process full factorial
- Optimizing our process response surface
- Determine the number of factors
- Determine the number of levels

www.gapimprove.org

DOE Design

Multiple Processes, How Many Samples

- Injection Molding Depends on the number of runs and how many replicates
- Pad Printing Depends on the number of molding runs/replicates + the number of ink factors + silicone pad force
- Curing Depends on the number of molding and pad printing runs + the number of curing factors
- Ultrasonic Welding Depends on the number of molding runs/replicates + the number of weld factors

